Postoperative Troponin Monitoring

Peter Nagele, MD MSc

Professor and Chairman

Department of Anesthesia & Critical Care

The University of Chicago

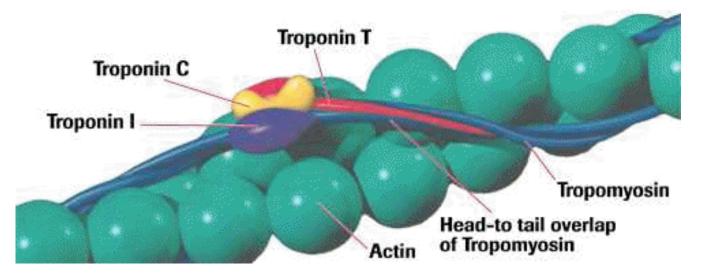
Outline

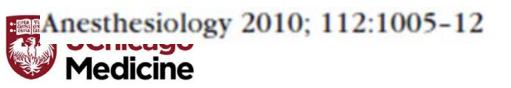
- Cardiac Troponin/ High-sensitivity Cardiac Troponin
- What is the Cause of Postop. Troponin Elevations?
- Should we measure cTn in all patients?
 - Before surgery?
 - After surgery?
- Management of Postop. Troponin Elevation

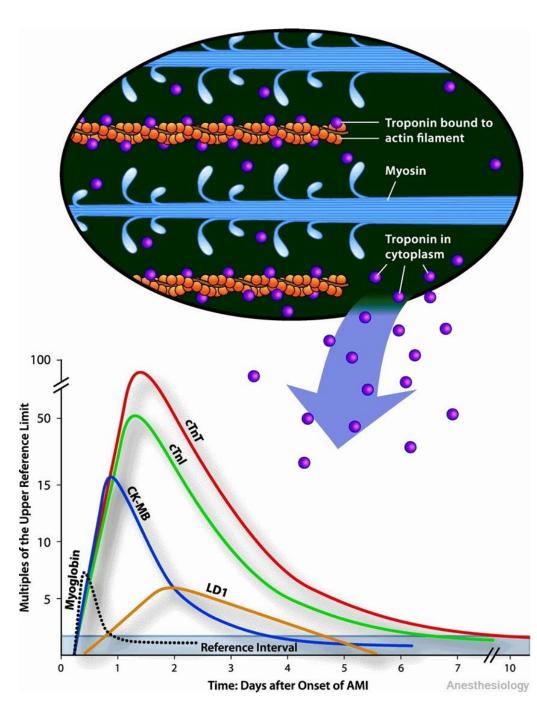
Conflicts of Interest

Dr. Nagele has received research support from **Roche Diagnostics and Abbott Diagnostics.**

Roche's hscTnT assay has recently received FDA clearance


All other hscTn assays are not cleared by the FDA




Cardiac troponins

TROPONIN T

A regulatory protein released when cardiac cell necrosis occurs.

Cardiac Troponin

- Gold Standard for diagnosis of acute MI
- Absolute myocardial tissue specificity except for:
 - In the fetus, cTnT also expressed in skeletal muscle (cTnI not)
 - In rare muscle diseases, cTnT may be re-expressed in adult skeletal muscle
- High clinical sensitivity
- 2 forms: cTnI and cTnT
 - cTnT: one assay
 - cTnI: >10 assays substantial variability
- Assays are not standardized or harmonized

High-Sensitivity Cardiac Troponin

"Or why troponin is no longer like a pregnancy test"

High-sensitivity cardiac troponin assays

- Measure the same cTn molecule!
- Much higher sensitivity into ng/L range
- Can be detected <u>at baseline</u>

2 Potential Game-Changing Features

- Risk Prediction at baseline
- Rapid acute MI diagnosis

How is an abnormal troponin defined?

Any measurement above the 99th percentile of a normal reference population (URL) = "Elevation"

<u>Method</u>	Limit of Detection (LOD) (ng/L)	<u>99th % (ng/ml)</u>	<u>% Healthy Subjects</u> above LOD
Roche cTnT "4 th Gen"	10	100	0.7
Roche hscTnT "5 th Gen"	5	14	25
Abbott "Contemporary" cTnl	10	28	2
Abbott hscTnl	1.2	16	96
Siemens "Contemporary" cTnl	40	70	2

What is the cause of postop. cTn elevations?

Do all postop. cTn elevation indicate myocardial injury/necrosis/infarction?

What causes <u>acute</u> cTn elevations?

Myocardial ischemia

- Thrombotic event
- Demand ischemia (stable CAD)

Normal coronary artery

Atherosclerosis

Atherosclerosis with blood clot

Coronary spasm

	Mechanism
Cardiac	
Thrombotic acute coronary syndrome	Hypoxic damage to myocytes
Spontaneous coronary artery dissection	Hypoxic damage to myocytes
Acute heart failure	Global wall stretch, systemic and coronary hypoperfusion
Myocarditis	Direct damage to myocytes
Pericarditis	Direct damage to myocytes
Aortic dissection (Stanford A)	Dissection of coronary artery with hypoxic damage to myocytes
Cardiac procedures	
 Coronary angioplasty 	Side branch occlusions, coronary dissection, bulky devices causing transient ischemia and microembolism
 Electrophysiologic ablations 	Direct damage to myocytes
 Electrical cardioversions 	Direct damage to myocytes
• Open heart surgery	Direct surgical trauma, incomplete cardioprotection, reperfusion injury, myocardial infarction

.. . .

Defibrillator shocks Heart transplantation

Cardiotoxic drugs Cardiac contusion after blunt chest wall trauma Noncardiac Pulmonary embolism

Septic shock/critically ill patients

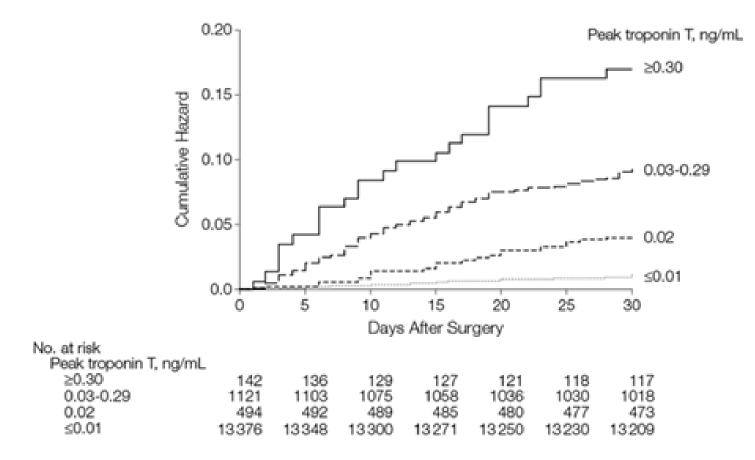
Strenuous exercise

Rhabdomyolysis

Direct damage to myocytes Inflammatory/immune mediated, direct surgical trauma Direct toxic effects to myocytes Direct damage to myocytes

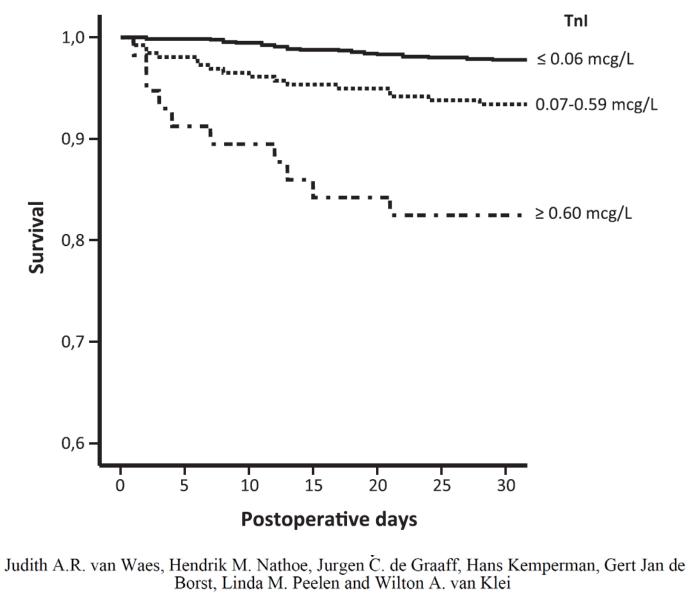
Right ventricular strain Oxygen supply/demand mismatch, cytokine/ endotoxin-mediated toxicity, heterophile antibodies (false-positives) Ventricular stretch, right ventricular stretch, right ventricular strain Direct damage to myocytes, cross-reactivity between skeletal and cardiac muscle isoforms with cTnT

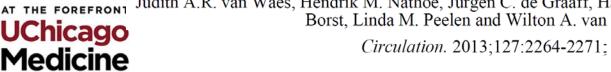
Acute kidney failure

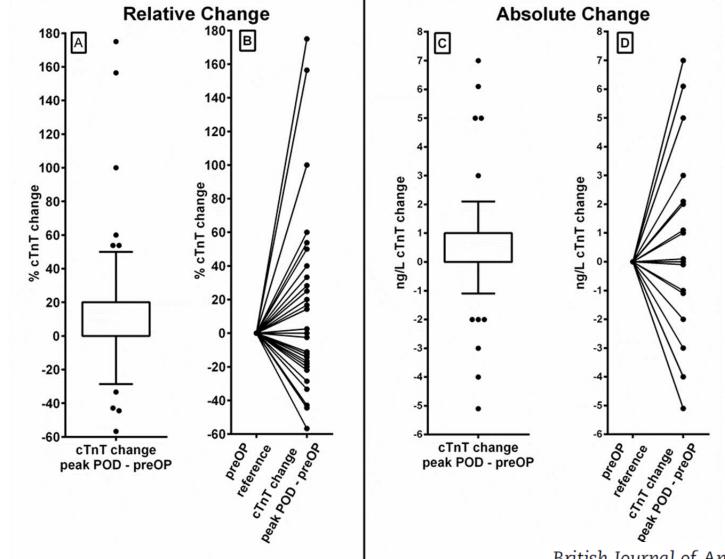

UChicago Medicine

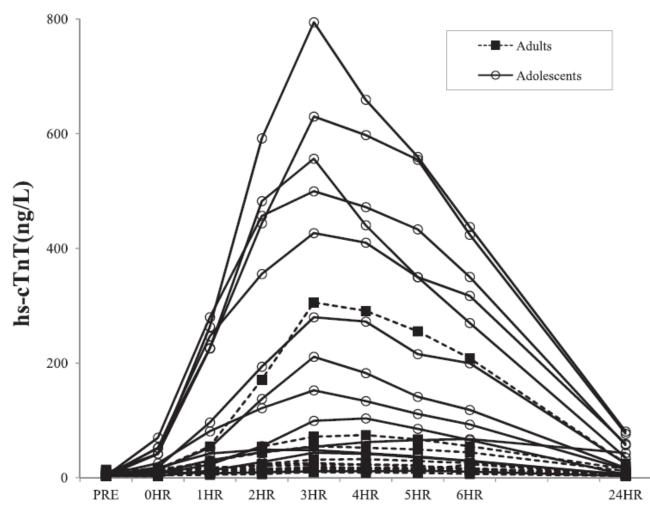
Sara JD, Holmes DR, Jr., Jaffe AS. Fundamental concepts of effective troponin use: important principles for internists. *The American journal of medicine*. 2015;128(2):111-119.

Postoperative Troponin Release




Prognosis of myocardial injury


JAMA. 2012;307(21):2295-2304

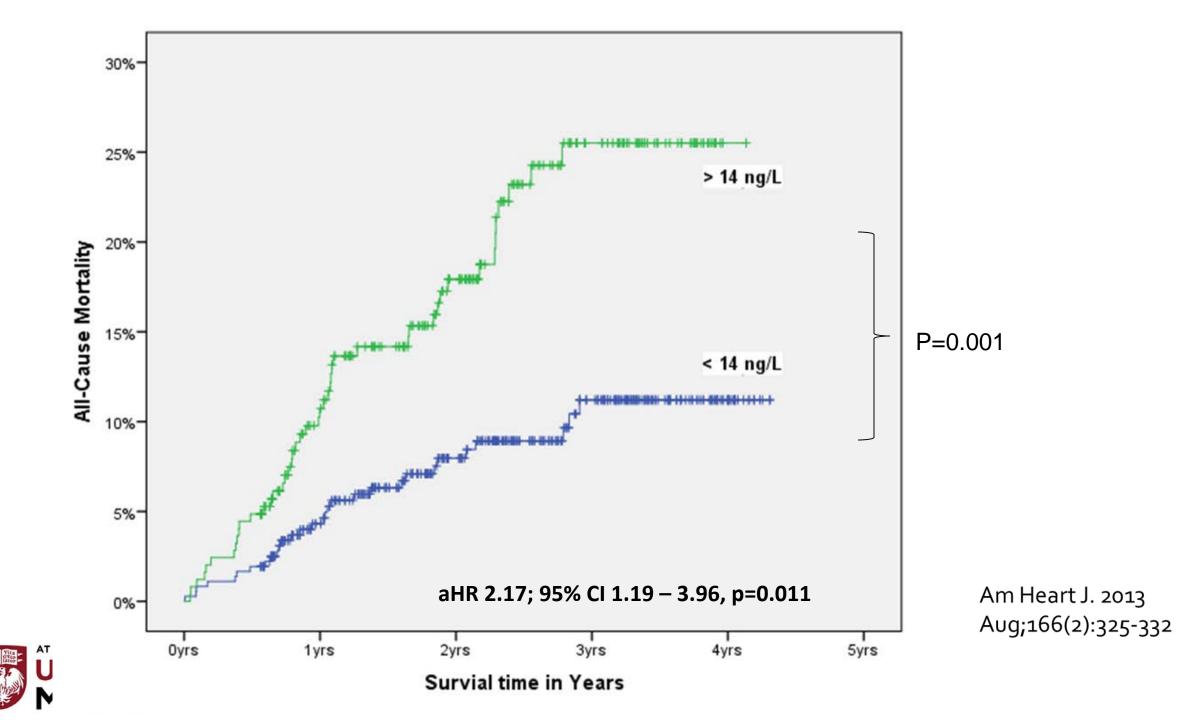

High-sensitivity cardiac troponin T in young, healthy adults undergoing non-cardiac surgery

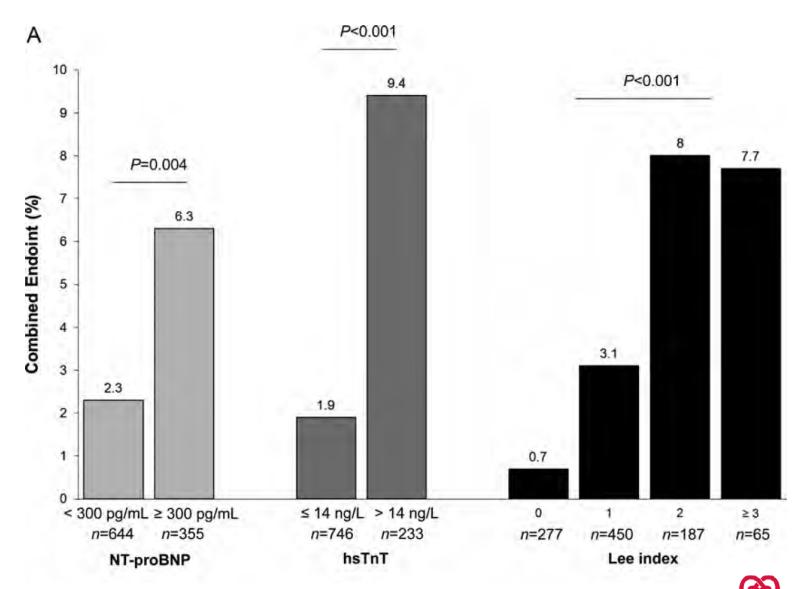
British Journal of Anaesthesia, 120 (2): 291–298 (2018)

The kinetics of highly sensitive cardiac troponin T release after prolonged treadmill exercise in adolescent and adult athletes

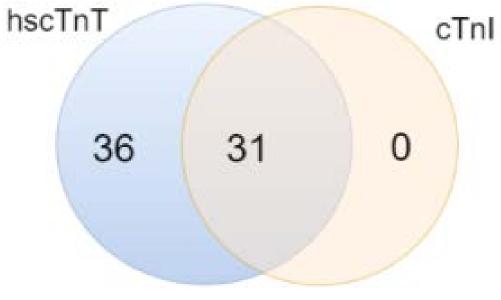
J Appl Physiol 113: 418-425, 2012.

Should we measure cTn in all patients?


Before surgery?


After surgery?

Preop. Risk Prediction



EUROPEAN SOCIETY OF CARDIOLOGY®

Improved Diagnosis of Postop. MI

HscTn increases detection rate of postop MI

Re-adjudicated MI with hscTnT vs. contemporary cTnI

Brown J, et al. Anesth Analg 2017

The Case for a Revised Definition of Myocardial Infarction—Resolving the Ambiguity of Type 2 Myocardial Infarction

JAMA Cardiology June 2016 Volume 1, Number 3

Etiology of acute coronary syndrome after non-cardiac surgery

Anesthesiology, 2018 Jun;128(6):1084-1091

Study Design

- 215,077 BJH patients screened
- Acute coronary syndrome within 30d after non-cardiac surgery
- Had urgent coronary angiography
- Cath films were reviewed blinded by 2 cardiologists
- Main endpoints:
 - Type 1 (plaque rupture/thrombus)
 - Type 2 (demand ischemia, stable CAD)
 - Type 4B MI (stent thrombosis)

Characteristics of acute coronary syndrome events

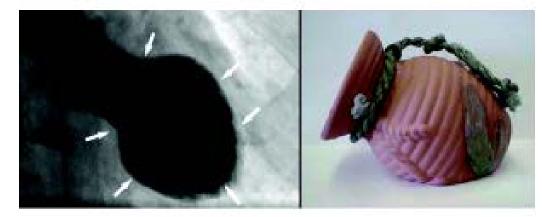
 All events
 Type 1 MI
 Type 2 MI
 Type 4B MI

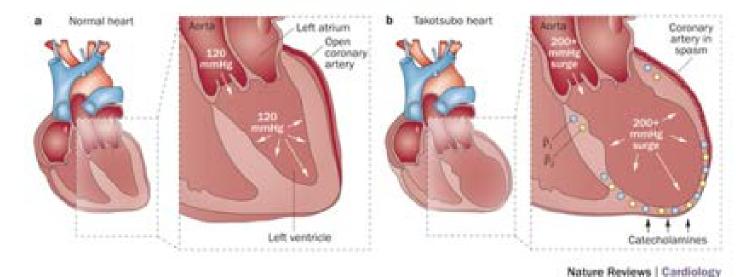
 n=146 (100%)
 n=37 (25.3%)
 n=106
 n=3

 (72.6%)
 (2.1%)*

Type of event, n (%)

STEMI	21 (14.4)	5 (13.5)	14 (13.2)	2 (66.7)
NSTEMI	117 (80.1)	31 (83.8)	85 (80.2)	1 (33.3)
Unstable Angina	8 (5.5)	1 (2.7)	7 (6.6)	0




Table 3. Coronary Angiography Findings

	All Events n=146 (100%)	Type 1 MI n=37 (25.3%)	Type 2 MI n=106 (72.6%)	Type 4B MI n=3 (2.1%)
Normal or mild disease, n (%)	39 (26.7)	2 (5.4)	37 (34.9)	0
Calcification, n (%)	78 (53.4)	25 (67.6)	53 (50)	0
Haziness, n (%)	77 (52.7)	33 (89.2)	41 (38.7)	3 (100)
Ulceration, n (%)	28 (19.2)	25 (67.6)	1 (.9)	2 (66.7)
Thrombus, n (%)	5 (3.4)	2 (5.4)	0	3 (100)
Stress-induced Cardiomyopathy, n (%)	14 (9.6)	0	14 (13.2)	0

Takotsubo (Stress) Cardiomyopathy

Controversies

- What is the cause of postop. cTn elevations?
- Do all postop. cTn elevation indicate myocardial injury/necrosis/infarction?
- Are all postop. cTn elevations bad?
- What is the role of hscTn?
- What to do with postop. cTn elevations?

How to manage postop. cTnl elevations

- Is it acute or chronic? (Do you have a preop. sample?)
- Rule in/out non-cardiac causes
 - Right heart (PE, pulm. hypertension, etc.)
 - Acute/chronic kidney injury/damage
- Are there clinical symptoms consistent with myocardial ischemia?
- ECG changes?
- Consider obtaining a separate biomarker (BNP, NT-proBNP)

The MANAGE Trial

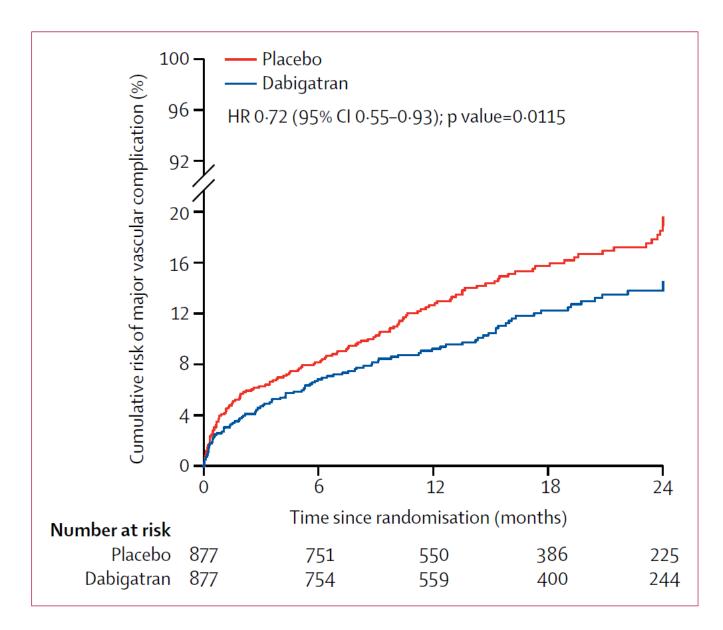
Dabigatran in patients with myocardial injury after non-cardiac surgery (MANAGE): an international, randomised, placebo-controlled trial

P J Devereaux, Emmanuelle Duceppe, Gordon Guyatt, Vikas Tandon, Reitze Rodseth, Bruce M Biccard, Denis Xavier, Wojciech Szczeklik, Christian S Meyhoff, Jessica Vincent, Maria Grazia Franzosi, Sadeesh K Srinathan, Jason Erb, Patrick Magloire, John Neary, Mangala Rao, Prashant V Rahate, Navneet K Chaudhry, Bongani Mayosi, Miriam de Nadal, Pilar Paniagua Iglesias, Otavio Berwanger, Juan Carlos Villar, Fernando Botto, John W Eikelboom, Daniel I Sessler, Clive Kearon, Shirley Pettit, Mukul Sharma, Stuart J Connolly, Shrikant I Bangdiwala, Purnima Rao-Melacini, Andreas Hoeft, Salim Yusuf, on behalf of the MANAGE Investigators*

Lancet 2018; 391: 2325-34

Study Design

- Patient with MINS
- Randomized to either 110 mg dabigatran for 2 years or placebo
- Complex composite endpoint changed during the trial
- N= 1,754
- Stopped early



	Dabigatran group (n=877)	Placebo group (n=877)
Age (years)	70 (11)	70 (11)
Sex		
Male	453 (52%)	443 (51%)
MINS diagnostic criteria		
Myocardial infarction	172 (20%)	173 (20%)
Isolated ischaemic troponin elevation	705 (80%)	704 (80%)
Troponin data associated with MINS		
Peak measured troponin value (ng/L)	82 (45–196)	82 (45–200)
Difference between the highest and lowest troponin values (ng/L)*	40 (16–160)	48 (18-154)
Difference between the highest and lowest troponin values ≥5 ng/L	592/625 (95%)	590/627 (94%)
Time from surgery to MINS diagnosis (days)	1 (1-2)	1 (1-2)
Time from MINS diagnosis to randomisation (days)	5 (2–14)	5 (2–14)
Medical history		
Previous myocardial infarction	116 (13%)	110 (13%)
Recent high-risk coronary artery disease†	17 (2%)	21 (2%)
Previous stroke	29 (3%)	42 (5%)
Previous peripheral arterial disease	124 (14%)	128 (15%)
Previous pulmonary embolism	6 (1%)	7 (1%)
Previous deep venous thrombosis	16 (2%)	15 (2%)
Diabetes	222 (25%)	234 (27%)
Hypertension	585 (67%)	587 (67%)

	Dabigatran (n=877)	Placebo (n=877)	Hazard ratio (95% CI)	p value
Primary efficacy outcome				
Composite of vascular mortality and non-fatal myocardial infarction, non-haemorrhagic stroke, peripheral arterial thrombosis, amputation, and symptomatic venous thromboembolism	97 (11%)	133 (15%)	0.72 (0.55–0.93)	0.0115
Secondary efficacy outcomes				
Vascular mortality	52 (6%)	64 (7%)	0.80 (0.56–1.16)	
All-cause mortality	100 (11%)	110 (13%)	0.90 (0.69–1.18)	
Myocardial infarction	35 (4%)	43 (5%)	0.80 (0.51–1.26)	
Cardiac revascularisation procedure	32 (4%)	21 (2%)	1.53 (0.88–2.65)	
Non-haemorrhagic stroke	2 (<1%)	10 (1%)	0.20 (0.04–0.90)	
Peripheral arterial thrombosis	0	4 (<1%)		
Amputation	18 (2%)	26 (3%)	0.70 (0.38–1.27)	
Symptomatic venous thromboembolism	8 (1%)	17 (2%)	0.47 (0.20-1.08)	
Readmission to hospital for vascular reasons	113 (13%)	130 (15%)	0.86 (0.67–1.11)	
Data are n (%) unless otherwise indicated.				
Table 2: Efficacy outcomes				

	Dabigatran (n=877)	Placebo (n=877)	Hazard ratio (95% CI)	p value
Primary safety outcome				
Composite of life-threatening, major, and critical organ bleeding	29 (3%)	31 (4%)	0.92 (0.55–1.53)	0.78
Secondary safety outcomes				
Life-threatening bleeding	9 (1%)	8 (1%)	1.11 (0.43–2.88)	
Major bleeding	21 (2%)	25 <mark>(</mark> 3%)	0.83 (0.46–1.48)	
Critical organ bleeding	5 (1%)	10 (1%)	0.49 (0.17-1.43)	
Intracranial bleeding	4 (<1%)	3 (<1%)	1.32 (0.30–5.90)	
Haemorrhagic stroke	2 (<1%)	2 (<1%)	0.98 (0.14–6.96)	
Clinically significant lower gastrointestinal bleeding	15 (2%)	6 (1%)	2.50 (0.97-6.44)	
Clinically non-significant lower gastrointestinal bleeding	33 (4%)	7 (1%)	4·77 (2·11–10·80)	
Minor bleeding	134 (15%)	84 (10%)	1.64 (1.25–2.15)	
Fracture	39 (4%)	28 (3%)	1.38 (0.85–2.24)	
Dyspepsia	129 (15%)	98 (11%)	1.33 (1.02–1.73)	
Data are n (%) unless otherwise indicated.				
Table 3: Safety outcomes				

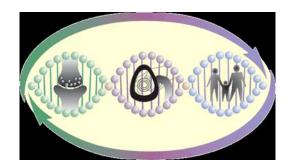
	Dabigatran	Placebo		Hazard ratio (95% CI)	p _{interaction} value
	Events/patients	Events/patients			
Timing of randomisation					0.09
≤5 days of MINS while still in hospital	52/432 (12%)	85/436 (20%)		0.60 (0.42–0.84)	
>5 days after MINS or after hospital discharge	45/445 (10%)	48/441 (11%)	_ 4	0.94 (0.63–1.42)	
MINS diagnostic criterion					0.22
Myocardial infarction	25/172 (15%)	44/173 (25%)	- -	0.55 (0.33-0.89)	
Isolated ischaemic troponin elevation	72/705 (10%)	89/704 (13%)	-#+	0.80 (0.58–1.09)	
History of peripheral arterial disease					0.22
Yes	30/124 (24%)	51/128 (40%)		0.58 (0.37-0.91)	
No	67/753 (9%)	82/749 (11%)	-#+	0.80 (0.58–1.11)	
Receiving dual antiplatelet therapy at the time of randomisation					0.90
Yes	6/22 (27%)	11/29 (38%)		0.68 (0.25–1.87)	
No	91/855 (11%)	122/848 (14%)	-=-	0.72 (0.55–0.95)	
Overall	97/877 (11%)	133/877 (15%)	-#-	0.73 (0.56-0.95)	
		-	0 0.5 1 1.5 2 2.5 Hazard ratio (95% CI)	_	
		F	avours dabigatran Favours placebo		

Figure 3: Subgroup analyses of the primary efficacy outcome MINS=myocardial injury after non-cardiac surgery.

How should we interpret MANAGE?

- Interesting signal
- Not a treatment of MINS
- Cautious results of a single trial should not be immediately put into clinical practice
- Higher bleeding
- Most patients stopped dabigatran
- Secondary prevention

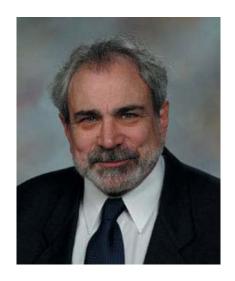
Funding Sources



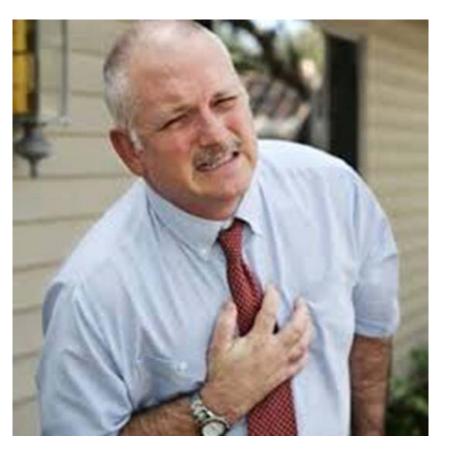
National Heart, Lung, and Blood Institute

Medicine

Learn and Lives



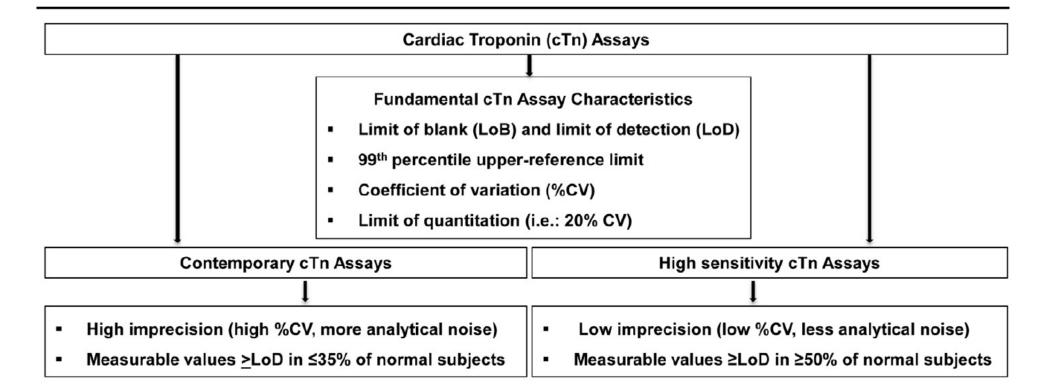
Thanks

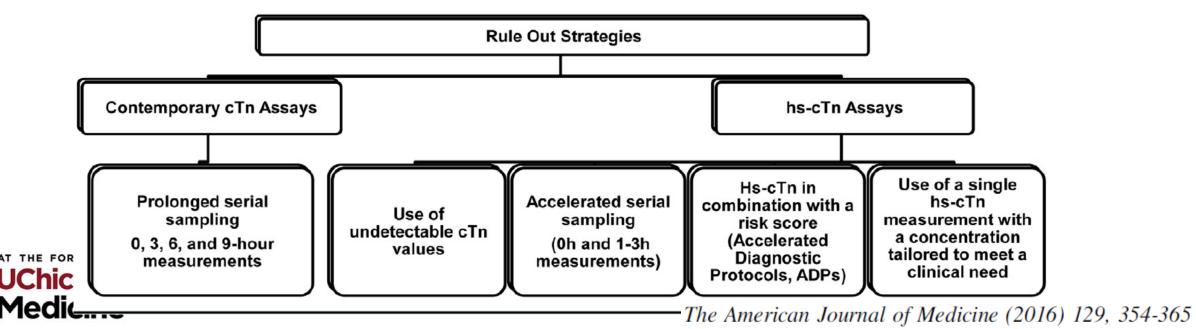


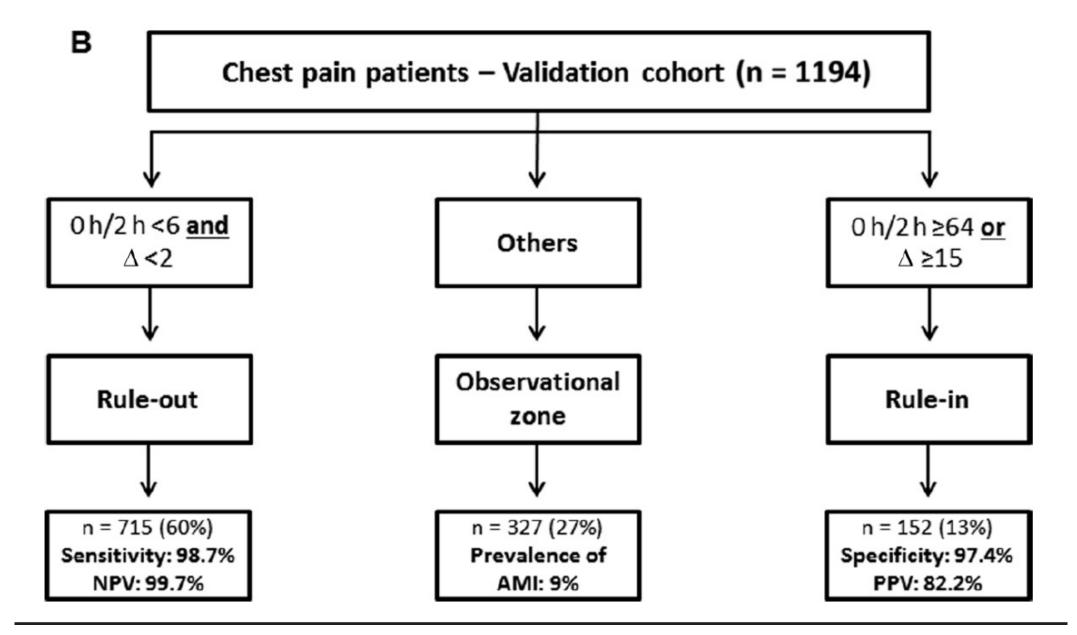
Rapid MI Diagnosis

Acute MI diagnosis

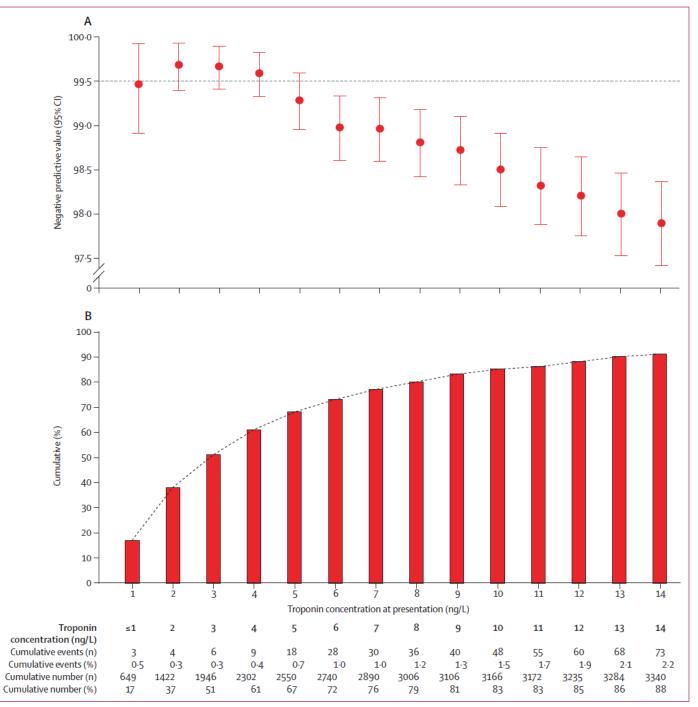
<u>Standard scenario:</u> Patient with chest pain in ED


The Universal Definition of MI


Evidence of myocardial necrosis in a clinical setting consistent with myocardial ischemia


- Rise and/or fall in cTn (one value >99th percentile) PLUS either
 - Symptoms of Ischemia
 - New ST-segment-T-wave changes or LBBB
 - New pathological Q waves
 - Imaging evidence

Circulation. 2012;126:2020-2035



Clinical Chemistry 62:3 494-504 (2016)

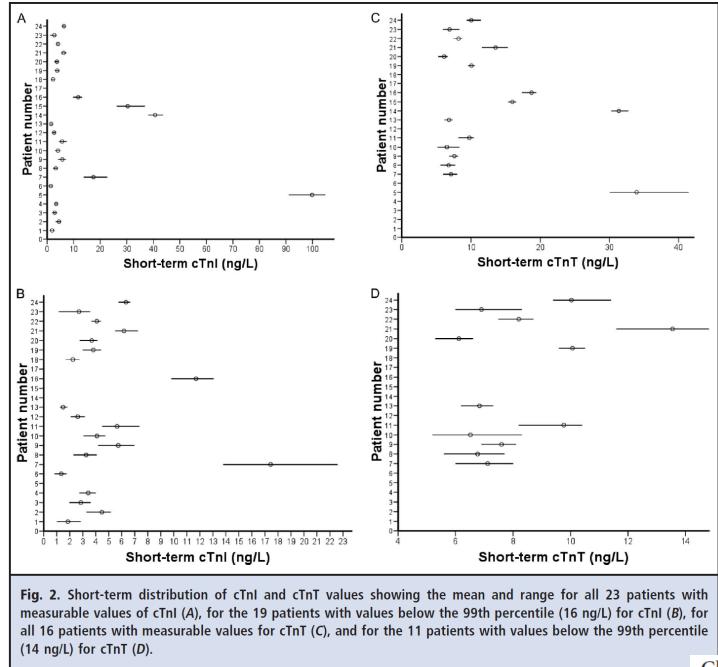
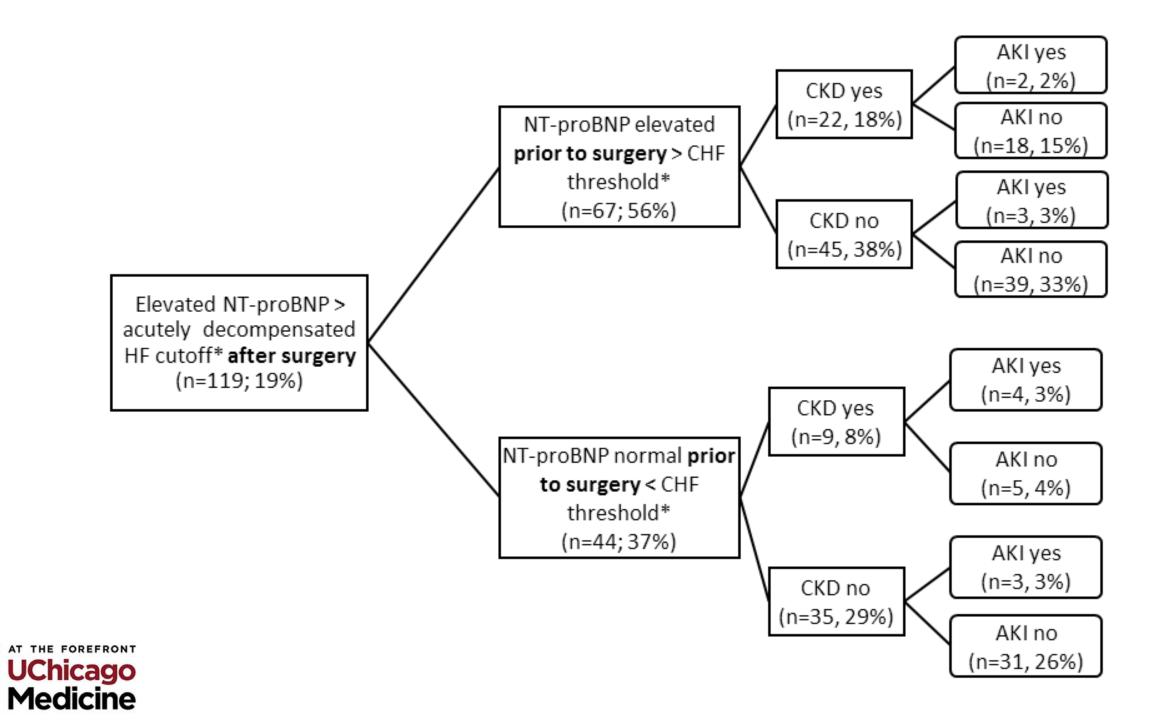

Lancet 2015; 386: 2481-88

Figure 1: Cardiac troponin I concentration at presentation and risk of myocardial infarction

Hs-cTn change values

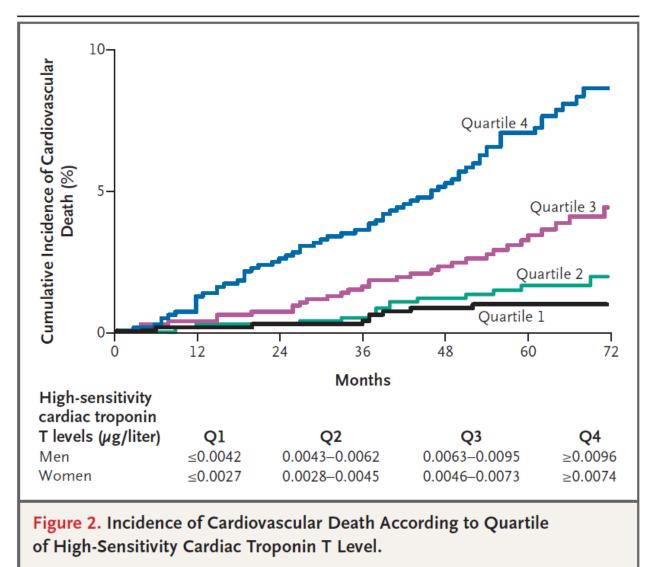
- Analytical variability: <5%
- Short-term biological variability:
 - Up to 20% for values at 99th percentile
 - Up to 50% in lower values (e.g. 4-8 ng/L)
- Long-term biological variability:
 - Up to 85%



UChicago Medicine

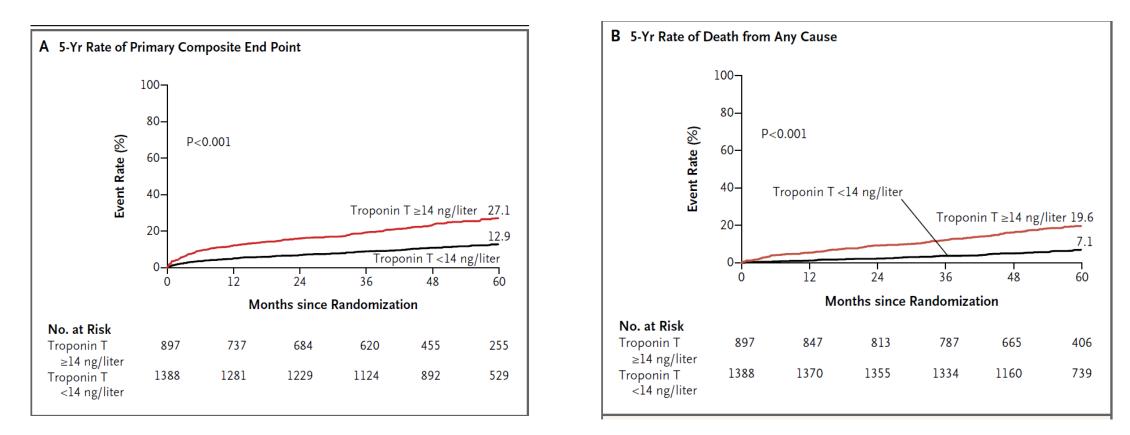
Clinical Chemistry 59:2 (2013)

	NT-proBNP elevation	Clinical Symptoms	Imaging/ echo	Concomitant MI	Concomitant Myocardial Injury	Concomitant AKI	N (%)	Total n (%)
Probable	+	+	+	5 (45)	7 (64)	2 (18)	11 (1.8)	11 (1.8)
Possible	+	+	-	8 (35)	11 (48)	2 (9)	23 (3.7)	29 (4.7)
	+	-	+	3 (50)	3 (50)	1 (17)	6 (1.0)	
Uncertain	+	-	-	17 (22)	29 (38)	6 (8)	76 (12.3)	86 (13.9)
	-	+	+	3 (100)	2 (67)	0	3 (0.5)	
	-	+	-	1 (20)	3 (60)	0	5 (0.8)	
	-	-	+	0	1 (50)	0	2 (0.3)	
Unclear	-	-	_	6 (21)	12 (41)	1 (3)	28 (4.5)	29 (4.7)
Total	116	42	22	43	56 (36)	12 (8)	155 (25.1)	155 (25.1)


Risk Prediction

ORIGINAL ARTICLE

A Sensitive Cardiac Troponin T Assay in Stable Coronary Artery Disease


N Engl J Med 2009;361:2538-47.

ORIGINAL ARTICLE

Troponin and Cardiac Events in Stable Ischemic Heart Disease and Diabetes

UChicago Medicine N Engl J Med 2015;373:610-20.

