

CAS 2018 Annual Meeting June 15-18, 2018 • Montréal, Québec

What do I need to know about ECMO?

Matteo Parotto, MD PhD

Department of Anesthesiology & Interdepartmental Division of Critical Care Medicine

Interdepartmental Division of Critical Care Medicine

No conflicts of interest to disclose

Interdepartmental Division of Critical Care Medicine

Disclosure

Interdepartmental Division of Critical Care Medicine

ECLS Registry Report

International Summary

January, 2018

UNIVERSITY OF TORONTO

Interdepartmental Division of Critical Care Medicine

ECLS Registry Report

International Summary

January, 2018

	Overall Outcomes				
	Total Runs	Survived	ECLS	Survived	to DC or Transfer
Neonatal					
Pulmonary	30,844	25,922	84%	22,599	73%
Cardiac	7,718	5,011	64%	3,231	41%
ECPR	1,694	1,125	66%	694	40%
Pediatric					
Pulmonary	8,739	5,890	67%	5,079	58%
Cardiac	10,332	7,088	68%	5,375	52%
ECPR	3,881	2,223	57%	1,643	42%
Adult					
Pulmonary	15,686	10,463	66%	9,264	59%
Cardiac	15,201	8,489	55%	6,379	41%
ECPR	4,745	1,830	38%	1,381	29%
Total	98,840	68,041	68%	55,645	56%

Interdepartmental Division of Critical Care Medicine

- What is ECMO?
- Why are we using it?
- How does it work?
- How do I assist patients who are on ECMO?

Interdepartmental Division of Critical Care Medicine

Interdepartmental Division of Critical Care Medicine

48 yr old ♂, previously healthy

 Admitted to E.R. at the local community hospital with respiratory failure → Endotracheal intubation and mechanical ventilation → ICU → ARDS related to Influenza A

Interdepartmental Division of Critical Care Medicine

 Over the following 24 hours, worsening hypoxemia and hemodynamics (antivirals, sedation, NMBAs, high PEEP, FiO2 100%, norepinephrine, epinephrine, vasopressin)

• 2D echo shows biventricular failure - ? Viral myocarditis

Interdepartmental Division of Critical Care Medicine

 The ICU team consults the ECMO centre, and consensus is that extracorporeal life support should be instituted

 A retrieval team is deployed, and reaches the referring ICU in 1h

Interdepartmental Division of Critical Care Medicine

- The decision is made to proceed to V-A ECMO cannulation
- Due to unfavourable vascular anatomy on ultrasound, the plan is to proceed with surgical "cut-down" in the OR
- It's 1am The case is booked as an emergency, and you are the anesthesiologist on call...

Interdepartmental Division of Critical Care Medicine

Outline

- Definition
- Indications
- Technical Aspects
- Clinical Management
- Conclusions

Interdepartmental Division of Critical Care Medicine

Definition

Extracorporeal membrane oxygenation (ECMO) is a temporary mechanical support system used to aid lung and/or heart function in patients with severe respiratory or cardiac failure

Interdepartmental Division of Critical Care Medicine

First successful extracorporeal life support patient, treated by J. Donald Hill - 1971

Interdepartmental Division of Critical Care Medicine

Interdepartmental Division of Critical Care Medicine

J Thorac Dis 2015;7(7):E166-E176

Table 1 ECMO Indications for cardiac support (VA ECMO only)

- Cardiogenic shock Severe cardiac failure due to almost any cause:
 - acute coronary syndrome
 - cardiac arrhythmic storm refractory to other measures
 - sepsis with profound cardiac depression
 - drug overdose/toxicity with profound cardiac depression
 - myocarditis
 - pulmonary embolism
 - isolated cardiac trauma
 - acute anaphylaxis
- Post cardiotomy: inability to wean from cardiopulmonary bypass after cardiac surgery
- o Post heart transplant: primary graft failure after heart or heart-lung transplantation
- o Chronic cardiomyopathy:
 - as a bridge to longer term VAD support
 - or as a bridge to decision
- o Periprocedural support for high-risk percutaneous cardiac interventions
- o Bridge to transplant

ECMO, Extra Corporeal Membrane Oxygenation; VA, venoarterial.

Table 2 ECMO indications for respiratory support

- o Acute respiratory distress syndrome:
 - severe bacterial or viral pneumonia
 - aspiration syndromes
 - alveolar proteinosis
- o Extracorporeal assistance to provide lung rest:
 - airway obstruction
 - pulmonary contusion
 - smoke inhalation
- o Lung transplant:
 - primary graft failure after lung transplantation
 - bridge to lung transplant
 - intaroperative ECMO
- o Lung hyperinflation:
 - status asthmaticus
- o Pulmonary haemorrhage or massive haemoptysis
- o Congenital diaphragmatic hernia, meconium aspiration
- ECMO, Extra Corporeal Membrane Oxygenation.

Interdepartmental Division of Critical Care Medicine

Table 4 Differences between Venoarterial and Venovenous Extracorporeal Membrane Oxygenation

VA ECMO			VV ECMO	
Provides cardiac support to assist systemic circulation		Does not provide cardiac support to assist systemic circulation		
Requires arterial and venous of	annulation	Requires only venous c	annulation	
Bypasses pulmonary circulation	on/decreases pulmonary	Maintains pulmonary bl	ood flow	
artery pressures				
Could be used in RV failure		Can't be used		
Lower perfusion rates are nee	ded	Higher perfusion rates a	are needed	
Higher PaO ₂ is achieved		Lower PaO ₂ is achieved	I	
ECMO circuit connected in pa	rallel to the heart and lungs	ECMO circuit connecte	d in series to the heart a	nd lungs
FOMO Estre Compared March				

ECMO, Extra Corporeal Membrane Oxygenation; VA, venoarterial; VV, venovenous.

Interdepartmental Division of Critical Care Medicine

able 2 Contraindications to Extracorporeal Membrane Oxygenation Use	
Absolute	
Severe, irreversible non-cardiac organ damage limiting survival (eg, irreversible brain injury)	
Irreversible pulmonary or cardiac failure if transplantation or long-term LVAD will not be considered	
Severe aortic regurgitation Aortic dissection	
telative	
Severe coagulopathy or contraindication to anticoagulation	
Limited vascular access	
Severe peripheral arterial disease	
	1

Adapted from Abrams et al.37

Interdepartmental Division of Critical Care Medicine

Technical Aspects

Basic ECMO circuit:

- Vascular cannulas
- Pump
- External membrane oxygenator
- Warmer

Interdepartmental Division of Critical Care Medicine

N Engl J Med 2011;365:1905-14.

Interdepartmental Division of Critical Care Medicine

Technical Aspects

Veno-venous (V-V) ECMO:

- 2 venous cannulas (or 1 double stage venous cannula)
- blood is typically drained from the body via an inflow (into the pump/oxygenator) cannula in the vena cava
- returned via an outflow cannula in close proximity to the right atrium

Interdepartmental Division of Critical Care Medicine

Interdepartmental Division of Critical Care Medicine

M.J. Griffee et al. / Journal of Cardiothoracic and Vascular Anesthesia 32 (2018) 370-378

Complication	Safety Tip		
Injury of carotid or pleura	Ultrasound guidance of venous access		
Perforation of RA, RV, IVC	Use multiplane TEE or fluoroscopy to exclude loop of wire in cardiac chamber before dilation and catheter advancement		
Subacute tamponade and arrest	Surveillance echocardiography after initiation of ECMO		
IVC difficult to cannulate, leading to prolonged	 Decrease positive end-expiratory pressure or disconnect circuit 		
attempts	 Fluid challenge Leave cannula tip in RA and determine whether recirculation is prohibitive 		
	 Consider using only return lumen and place separate venous drainage cannula 		
	 Consider stiffer wire Consider additional imaging modality 		

Abbreviations: ECMO, extracorporeal membrane oxygenation; IVC, inferior vena cava; RA, right atrium; RV, right ventricle; TEE, transesophageal echocardiography.

Interdepartmental Division of Critical Care Medicine

Makdisi and Wang. J Thorac Dis 2015;7(7):E166-E176

Interdepartmental Division of Critical Care Medicine

Makdisi and Wang. J Thorac Dis 2015;7(7):E166-E176

Interdepartmental Division of Critical Care Medicine

M.J. Griffee et al. / Journal of Cardiothoracic and Vascular Anesthesia 32 (2018) 370-378

Interdepartmental Division of Critical Care Medicine

M.J. Griffee et al. / Journal of Cardiothoracic and Vascular Anesthesia 32 (2018) 370-378

Table 4 Role of TEE for Management of Dual-Lumen Cannula			
Phase of Cannulation	TEE Checklist		
Precannulation	 Evaluate systolic function 		
	 If systolic failure evident, consider VA ECMO 		
	 Evaluate volume status 		
	 Exclude severe structural TR 		
Cannulation	 Confirm the course of the wire and cannula 		
	 Exclude looping in RA 		
	 Ensure tip of cannula is in IVC 		
Postcannulation	 Evaluate for pericardial effusion 		
	 Evaluate for signs of tamponade 		
	 Verify orientation of return jet across tricuspid valve, entering R 		

Abbreviations: BCMO, venovenous extracorporeal membrane oxygenation; IVC, inferior vena cava; RA, right atrium; TR, tricuspid regurgitation; VA, veno-arterial.

Interdepartmental Division of Critical Care Medicine

Cannulation Strategy	Strengths	Weaknesses
Right internal jugular dual lumen cannula (currently only available as the Avalon Elite from Avalon Labs, USA)	 Ambulation feasible Facilitates prone positioning²⁰ May decrease transport risks²¹ Minimal recirculation unless tip migrates to hepatic vein or right atrium²¹ 	 Flow rates limited to 4.2 and 5.3 LPM in 27 and 31F models, respectively²¹ Risk of cardiac (RA or RV) or hepatic injury during placement²² Complex placement, which requires fluoroscopy or TEE^{20,23}
Femoral-jugular* (femoral cannula will terminate in distal IVC at the level of the diaphragm, jugular cannula will termi- nate in RA, directed at the tricuspid valve)	 Allows for highest degree blood flow, especially in obese patients A femoral drainage cannula (tip in the IVC) can be added to further increase flows 	 Inflow and outflow cannulas having oppos- ing lumens; recirculation is inversely related to the distance between the cannula tips
Femoral–femoral* (cannulas may be placed in a single or both femoral veins, with the tip of the drainage cannula terminating at the distal IVC at the level of the dia- phragm and return cannula in the RA) ²⁴	- Least complex technically	 Prevents ambulation Limits elevation of head of bed

Table 2. Comparison of the Three Most Common VV ECMO Cannulation Strategies

Fierro MA et al. Anesthesiology 2018; 128:181-201

Interdepartmental Division of Critical Care Medicine

Veno-venous (V-V) ECMO:

- dependent on patients' intrinsic cardiac output (CO) and hemodynamics for support!!!
- its application is for isolated respiratory failure

Interdepartmental Division of Critical Care Medicine

Question 1

Veno-venous extracorporeal membrane oxygenation (ECMO) provides:

- a) improved oxygenation
- b) carbon dioxide removal
- c) improved oxygenation and carbon dioxide removal
- d) improved oxygenation, carbon dioxide removal and hemodynamic support

Interdepartmental Division of Critical Care Medicine

Veno-venous ECMO can be provided via:

- a) two venous cannulas
- b) one dual lumen venous cannula
- c) a or b
- d) none of the above

Interdepartmental Division of Critical Care Medicine

Technical Aspects

Veno-arterial (V-A) ECMO:

- blood is extracted from a venous inflow cannula in the vena cava
- returned to the arterial system via an outflow cannula, thus bypassing the heart and lungs

Interdepartmental Division of Critical Care Medicine

Lawler P et al. Circulation. 2015;131:676-680.

Interdepartmental Division of Critical Care Medicine

Makdisi and Wang. J Thorac Dis 2015;7(7):E166-E176

Interdepartmental Division of Critical Care Medicine

Makdisi and Wang. J Thorac Dis 2015;7(7):E166-E176

Interdepartmental Division of Critical Care Medicine

Veno-arterial (V-A) ECMO:

- is not dependent on native cardiac output
- therefore used in patients with cardiogenic shock
- cannulation can be *central* or *peripheral*

Interdepartmental Division of Critical Care Medicine

V-A ECMO – Peripheral Cannulation

 flow from the arterial cannula is required to perfuse extracorporeally oxygenated blood retrograde up the descending aorta and into the ascending aorta to assure delivery to the coronary arteries and cerebral great vessels

Interdepartmental Division of Critical Care Medicine

V-A ECMO – Peripheral Cannulation

• if the left ventricular CO is negligible, the required extracorporeal flow will be small

Interdepartmental Division of Critical Care Medicine

V-A ECMO – Peripheral Cannulation

- as native cardiac function recovers and native cardiac ejection increases, anterograde aortic flow will compete with retrograde flow from the femoral cannula
- a mixing zone of anterograde deoxygenated (in patients with respiratory failure) and retrograde oxygenated blood flow will occur

Interdepartmental Division of Critical Care Medicine

V-A ECMO – Peripheral Cannulation

 pulse oxygen saturation from the right upper extremity or arterial blood gases from the right radial artery will inform whether ECMO is providing adequate cerebral (although not necessarily cardiac) oxygenation

Interdepartmental Division of Critical Care Medicine

Lindholm JA. J Thorac Dis 2018;10(Suppl 5):S606-S612

Interdepartmental Division of Critical Care Medicine

Question 3

Veno-arterial ECMO provides:

- a) respiratory support
- b) hemodynamic support
- c) a+b
- d) none of the above

Interdepartmental Division of Critical Care Medicine

Once VA ECMO support is initiated, clinical targets for titration include:

- arterial oxyhemoglobin saturation of >90%
- venous oxyhemoglobin saturation of >70% to 80%
- adequate tissue perfusion (including monitoring of end-organ function and blood lactate levels)

Interdepartmental Division of Critical Care Medicine

As ECMO support is initiated:

- blood volume is drawn from the patient → may preventatively administer IV fluids
- unlike CPB, ECMO circuits do not include a reservoir nor cardiotomy suction → if bleeding occurs, need IV fluid/blood transfusions

Interdepartmental Division of Critical Care Medicine

Anticoagulation

Unfractionated heparin infusion – TARGET:

activated clotting time (ACT) of 180 to 210 seconds

OR

• plasma partial thromboplastin time (PTT) of ≥1.5 times normal

Interdepartmental Division of Critical Care Medicine

Complications

- Bleeding
- Thrombosis
 - disseminated intravascular coagulation
 - shearing hemolysis
 - thrombocytopenia

 \rightarrow coagulation factors and platelet count should be closely followed

Gaffney AM et al. BMJ. 2010;341:c5317

Interdepartmental Division of Critical Care Medicine

Complications

• Patients are at elevated risk of embolic, hypoxic,

and hemorrhagic stroke

Case series of VA ECMO have reported stroke

rates of ≈8%

Combes A et al. Crit Care Med. 2008;36:1404–1411.

Interdepartmental Division of Critical Care Medicine

N Engl J Med 2018;378:1965-75. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome

A. Combes, D. Hajage, G. Capellier, A. Demoule, S. Lavoué, C. Guervilly, D. Da Silva, L. Zafrani, P. Tirot, B. Veber, E. Maury, B. Levy, Y. Cohen, C. Richard, P. Kalfon, L. Bouadma, H. Mehdaoui, G. Beduneau, G. Lebreton, L. Brochard, N.D. Ferguson, E. Fan, A.S. Slutsky, D. Brodie, and A. Mercat, for the EOLIA Trial Group, REVA, and ECMONet*

Among all the patients who were treated with ECMO

- the rate of bleeding was 53%
- the rate of hematoma at the cannula-insertion site was 6%
- the rate of infection at the cannula-insertion site was 14%
- the rate of intravascular hemolysis was 5%

Interdepartmental Division of Critical Care Medicine

Do not forget to protect the lungs:

- gas exchange is provided by ECMO
- keep low Vt (6ml/kg, or ?lower), PEEP, low FiO₂
- \rightarrow PC 10 cmH₂O, PEEP 10 cmH₂O, FiO₂ 0.21

Interdepartmental Division of Critical Care Medicine

How about pharmacokinetics?

Interdepartmental Division of Critical Care Medicine

	Table 1 Summary of pharmaeokinetic changes and potential dosing adjustments for antimicrobials during ECMO					
	Drug (ref.)	N-octanol/water partition coefficient	Protein binding (%)	Anticipated/reported pharmacokinetic changes	Dosing recommendations & comments	
	Antibiotics					
	Aminoglycosides (41-45)	<0.0	<30	Minimal circuit drug sequestration; enlarged Vd; decreased CL	Insufficient data to recommend optimal dosing"; TDM-guided dosing	
	Beta-lactams					
	Ampicillin (24)	1.35	15-30	Minimal to moderate circuit drug sequestration; enlarged Vd	Consider alternative agents; less drug loss in blood-primed vs. crystalloid-primed circuit	
	Ceftriaxone (26,29)	-1.7	95	Significant circuit drug sequestration; enlarged Vd	Dosing similar to critically ill patients not on ECMO support; TDM-guided dosing	
	Meropenem (46,47)	-0.69	2	Minimal circuit drug sequestration; enlarged Vd; circuit drug loss due to stability issues associated with the carbapenems	Dosing similar to critically ill patients not on ECMO support; TDM-guided dosing; consider alternative dosing strategies (Cl or El dosing)	
Ĵ Thorae Dia 2018;10(Suppl 5):\$629-\$641	Piperacillin/tazobactam (46)	0.67	30	Minimal circuit drug loss; enlarged Vd	Dosing similar to critically ill patients not on ECMO support; TDM-guided dosing; consider alternative dosing strategies (Cl or El dosing)	
	Fluoroquinolones (26,29)	<2.3	20-40	Minimal circuit drug sequestration	Dosing to optimise AUC ₆₋₃₄ /MIC ⁶	
	Vancomycin (48-51)	-3.1	50-60	Minimal circuit drug sequestration; enlarged Vd	Dosing similar to critically ill patients not on ECMO support; a loading dose 25–30 mg/kg followed by 30–40 mg/kg/day; TDM-guided dosing; consider Cl dosing	
	Antifungals					
	Caspofungin (24,52,53)	<0.17	97	Minimal to moderate circuit drug sequestration	Insufficient and conflicting data; dosing adjustments may be required	
	Voriconazole (24,52)	1	58	Significant drug sequestration	Higher initial loading dose with higher daily doses; TDM- guided dosing to monitor circuit saturation	

*, due to major refinements in ECMO technology, earlier pharmacokinetic data and dosing recommendations may potentially be irrelevant to current practice; ^b, these may be achieved with a 400 mg 8-hourly or 600 mg 12-hourly for ciprofloxacin. ECMO, extracorporeal membrane oxygenation; MIC, minimum inhibitory concentration; TDM, therapeutic drug monitoring.

Interdepartmental Division of Critical Care Medicine

J Thorns Dis 2018;10(Suppl 5):S629-S641

Table 2 Summary of pharmacokinetic changes and potential dosing adjustments for sedatives and analgesics during ECMO						
Sedatives and analgesics (ref.)	N-octanol/water partition coefficient	Protein binding (%)	Anticipated/reported pharmacokinetic changes	Dosing recommendations & comments		
Benzodiazepines						
Midazolam (5,6,28)	3.9	97	Significant circuit drug sequestration	Higher initial loading dose with higher daily doses		
Dexmedetomidine (17,20)	2.8	94–97	Significant circuit drug sequestration	Consider higher initial loading dose with higher daily doses*		
Opioids						
Fentanyl (24,27,28,74-76)	4.1	80-85	Significant circuit drug sequestration	Consider alternative agents; to be considered only as a short-term analgesia		
Morphine (24,27,28,32,33)	0.9	30–40	Minimal to moderate circuit drug sequestration	Higher initial loading dose with higher daily doses		
Propofol (23,77)	3.8	95–99	Significant circuit drug sequestration	Insufficient data but likely to require higher doses over time		

*, should be considered due to favourable safety profile when compared to other traditional agents. ECMO, extracorporeal membrane oxygenation.

Interdepartmental Division of Critical Care Medicine

Mr. J.D.

- V-A ECMO was successfully instituted (RIJ venous cannula, Rfem arterial cannula)
- It's now 2:30am, and the team is ready to leave the operating room and transport the patient to the ECMO center
 - ...when you notice right leg discoloration...

Interdepartmental Division of Critical Care Medicine

V-A ECMO – Peripheral Cannulation

- Given the need for large femoral arterial cannulas (size 16 to 21 Fr), distal leg ischemia can develop
- This risk may be reduced by prophylactic insertion of a small (6 Fr) anterograde perfusion cannula into the superficial femoral artery, to perfuse the leg distal to the primary arterial cannula

Interdepartmental Division of Critical Care Medicine

Geyer M et al. J Artif Organs (2018) 21:8–16.

Interdepartmental Division of Critical Care Medicine

Mr. J.D.

• Profuse bleeding at the cannulation site

\rightarrow Hold anticoagulation, correct coagulopathy

Fierro MA et al. Anesthesiology 2018; 128:181-201

Interdepartmental Division of Critical Care Medicine

Interdepartmental Division of Critical Care Medicine

Interdepartmental Division of Critical Care Medicine

The Journal of Thoracic and Cardiovascular Surgery • Volume 153, Number 4

Bilateral pneumonectomy to treat uncontrolled sepsis in a patient awaiting lung transplantation

Marcelo Cypel, MD,^{a,b} Thomas Waddell, MD,^{a,b} Lianne G. Singer, MD,^{a,c} Lorenzo del Sorbo, MD,^d Eddy Fan, MD,^d Matthew Binnie, MD,^{a,c} Niall D. Ferguson, MD,^d and Shaf Keshavjee, MD,^{a,b} Toronto, Ontario, Canada

Interdepartmental Division of Critical Care Medicine

Health » Awaiting transplant, mom lives 6 days without lungs

Awaiting transplant, mom lives 6 days without lungs

By Susan Scutti, CNN () Updated 4:59 PM ET, Tue January 31, 2017

U.S. Edition + \mathcal{P}

Live TV

Interdepartmental Division of Critical Care Medicine

Central Message

A patient with cystic fibrosis developed pulmonary-induced septic shock. Bilateral pneumonectomy was performed to remove the septic source. Six days later, a successful lung transplantation was performed.

Interdepartmental Division of Critical Care Medicine

SUMMARY

Interdepartmental Division of Critical Care Medicine

Take Home Messages

- ECMO use is expanding even if you are not in an ECMO centre, you may be exposed to it
- It may provide isolated respiratory (V-V ECMO) or cardio-respiratory (V-A ECMO) support
- Lower anticoagulation targets than CPB and no anticoagulation is acceptable for short periods of time
- Be aware of volume status/bleeding

Interdepartmental Division of Critical Care Medicine

Questions

Interdepartmental Division of Critical Care Medicine

Thank You

matteo.parotto@uhn.ca

Interdepartmental Division of Critical Care Medicine

Question 1

Veno-venous extracorporeal membrane oxygenation (ECMO) provides:

a) improved oxygenation

- b) carbon dioxide removal
- c) improved oxygenation and carbon dioxide removal

d) improved oxygenation, carbon dioxide removal and hemodynamic support

Interdepartmental Division of Critical Care Medicine

Veno-venous ECMO can be provided via:

- a) two venous cannulas
- b) one dual lumen venous cannula
- c) a or b
- d) none of the above

Interdepartmental Division of Critical Care Medicine

Question 3

Veno-arterial ECMO provides:

- a) respiratory support
- b) hemodynamic support
- c) a+b
- d) none of the above

Interdepartmental Division of Critical Care Medicine

Interdepartmental Division of Critical Care Medicine

Oxygenation Response to Positive End-Expiratory Pressure Predicts Mortality in Acute Respiratory Distress Syndrome

A Secondary Analysis of the LOVS and ExPress Trials

Ewan C. Goligher^{1,2,3,4}, Brian P. Kavanagh^{1,5,6}, Gordon D. Rubenfeld^{1,2,7}, Neill K. J. Adhikari^{1,2,7}, Ruxandra Pinto⁷, Eddy Fan^{1,2,4}, Laurent J. Brochard^{1,2,8}, John T. Granton^{1,2,4}, Alain Mercat⁹, Jean-Christophe Marie Richard¹⁰, Jean-Marie Chretien¹¹, Graham L. Jones¹², Deborah J. Cook^{12,13}, Thomas E. Stewart^{1,2,4}, Arthur S. Slutsky^{1,2,4}, Maureen O. Meade^{12,13}, and Niall D. Ferguson^{1,2,3,4}

Interdepartmental Division of Critical Care Medicine

Fierro MA et al. Anesthesiology 2018; 128:181-201

Interdepartmental Division of Critical Care Medicine

Table 6. Management and Troubleshooting of Hypoxemia, Hypercapnia, and ECMO Parameters						
	ECMO Interventions	Patient Interventions				
Hypoxemia	- Increase ECMO flow/RPMs	 Volume challenge if flows have acutely decreased Increase Fio₂ during the perioperative period Increase PEEP Decrease patient demand (sedation, muscle relaxation, cooling) 				
Hypercarbia	- Increase sweep gas flow rate	 Decrease patient demand (sedation, muscle relaxation, cooling) 				
Decreased ECMO circuit blood flow (with signs of hypoxemia, hypercarbia, or new clinical instability)	 Increase pump RPMs No intervention is necessary if patient condition is unchanged 	 Assess for changes to patient position Volume challenge Consider line position change during transport 				
ECMO tubing vibration or partial collapse ("line chatter")	- Decrease pump RPMs	 Volume challenge Reverse changes to patient position 				
Increasingly negative inflow pressure	 Decrease RPMs (if flows adequate for oxygenation) 	 Volume challenge if progressive change from baseline Beverse changes to patient position 				
High outflow line pressure	 Decrease RPMs (if flows adequate for oxygenation) 	novoloo onangoo to patione position				
Increased transmembrane pressure	 Assess for membrane clot; if severe consider replacement before OR If acute, membrane change may be needed 	 Consider using higher perioperative antico- agulation goals and restarting heparin earlier 				
High pre-ECMO Spo ₂ (not avail- able on all consoles)	 Consider a sign of possible recirculation: (1) Compare to systemic Spo₂ (should be lower), (2) assess for changes to cannula position, and (3) surgeon evaluation if likely requires cannula manipulation 	 Can reflect improved cardiac output, improved lung function/oxygenation, or transfusion of blood 				
Low pre-ECMO Spo ₂ (not avail- able on all consoles)	 Consider this a sign of low Scvo₂ Increase ECMO flows 	 Increase cardiac output Transfuse blood Decrease patient oxygen demand 				

Fierro MA et al. Anesthesiology 2018; 128:181-201

Interdepartmental Division of Critical Care Medicine

Table 5. Summary of Anesthetic Implications for VV ECMO Patients Undergoing Surgery				
Preoperative evaluation	 Assess and document ECMO settings and blood flow Asses for coagulopathy, consider risks of platelet dysfunction and DIC Type and cross for red blood cells, consider preparation of FFP Assess ECMO-specific complications (arrhythmias, anemia, bleeding, pneumothorax, thrombosis) Pause anticoagulation, if feasible and indicated 			
Transport to the OR	 Utilize standard ICU monitors Utilize transport ventilator or portable ICU ventilator with alarms Include a practitioner dedicated to ECMO and capable of troubleshooting 			
Induction and maintenance of anesthesia	 Patients may require little or no additional anesthetic depending on baseline degree of sedation TIVA is preferred 			
Monitoring	 Titrate anesthetics to clinical effect/depth monitor Arterial line can be at any site with VV ECMO Anesthetic depth monitoring is useful Echocardiagraphy is a reliable measure of cardiac output: all other techniques have 			
Volume assessment and management	 Encogremains reliable, but value also reflects decarboxylation done by ECMO Negative fluid balance is general goal in VV ECMO patients 			
	 Decreases in ECMO nows, venous pressure, and development of chatter carrenect low preload Consider volume challenge if ECMO flows are decreasing during period of acute blood loss (especially if associated with decreased Spo₂) 			
RBC transfusion: indications/triggers	 Blood can be used to increase DO₂, regardless of hemoglobin level Guidelines are widely variable; transfusion to Hb > 7 g/dl acceptable in selected patients 			
Management of anticoagulation for ECMO	 Acceptable to hold anticoagulation in perioperative period for most VV ECMO patients (unless they have had thromboembolic events) Generally, aPTT goals are 40–60 s and ACT goals are 180–220 s in VV ECMO patients 			
Assessment and treatment of coagulopathy	 Utilize traditional coagulation labs and or thromboelastometry to direct management of surgical bleeding; aPTT elevations may be artificial due to critical illness Platelet dysfunction and acquired von Willenbrand's disease common with prolonged ECMO durations Prothrombin complex concentrate may be considered for patients with bleeding and prolonged INR or clotting time who cannot tolerate volume Consider cryoprecipitate for hypofibrinogenemia 			

Fierro MA et al. Anesthesiology 2018; 128:181-201

Interdepartmental Division of Critical Care Medicine

Geyer M et al. J Artif Organs (2018) 21:8–16.

Interdepartmental Division of Critical Care Medicine

Table 4. Management Strategies for Hypercarbia

Intervention	Increases CO ₂ Elimination	Decreases CO ₂ Production	Decreases Paco ₂
Increasing fresh gas flow (sweep flow rate)	Yes	No	Yes
Increasing ECMO blood flow	No	No	No
Muscle relaxation, sedation, cooling, controlled ventilation	No	Yes	Yes
Increasing alveolar ventilation (increased mechanical ventilator minute ventilation)	Yes	No	Yes
Increasing ventilator PEEP	No	No	No

Fierro MA et al. Anesthesiology 2018; 128:181-201

Interdepartmental Division of Critical Care Medicine

continuous renal replacement therapy (CRRT) may be added to the circuit.

Makdisi and Wang. J Thorac Dis 2015;7(7):E166-E176

Interdepartmental Division of Critical Care Medicine

